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Nonlinear superposition formula of the Kdv equation 
with a source 
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Abstract. A nonlinear superposition formula of the KdV equation with a source is proved 
rigorously. 

1. Introduction 

Recently, the Kdv equation with a source, of the form 
m 

u,+~uu ,+u , , ,=  -I-- dk 4 @ l z ) x  

q5xx + (U + k2)@ = 0 (1b) 

was considered [I-31, where U = u(x, 1 )  and @ = @(x, f ;  k) are real and complex 
functions respectively, k is a real parameter and Y = v( k, t )  is a given real function. 
The boundary conditions for U and @ are specified as 

u + o  aslxl-m 

4 - +o elk' a s x - - a  

where bo = bo( k, 1 )  is a given function. Equation (1) has already been shown to be 
integrable by means of the inverse scattering method [ I ,  21. By means of the dependent 
variable transformations U =2(lnf),, 4 = c$o e'*"g/f; ( 1 )  is transformed into the 
following bilinear equation [3] 

where f = f ( x ,  1 )  and g = g(x, f ;  k )  are real and complex functions respectively, and 
the bilinear operator 0 7 0 :  is defined by [4,51 
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In [3], Matsuno has presented a two-parameter Backlund transformation 

g'g* 
m 

( D ,  + D:+ fi)f'.f=! dk  vl+o12( ---) k-iA k+iA 4 -m 

where A = A ( t )  and /.L = p ( t )  are real Backlund parameters and * denotes complex 
conjugate. A nonlinear superposition formula has also been deduced from the com- 
mutability of the BT (3). 

The purpose of this paper is to prove the following nonlinear superposition formula 
of (2) rigorously. 

Theorem. Let (fo, go) be a solution of (2) and suppose that ( J ,  g, )  ( i  = 1,2)  is a solution 

(i=1,2),A,#iA2,(A,-A,),=0,1;#O,g,#O(j=0,1,2).Then(f,,,g,,)definedby 
of (2) which is related by (fo, 8,) under BT (3) with (A, ,  F,), i.e. (fo, go) ( J ,  gJ 

is a new solution which is related by ( f l ,  gl)  and ( f 2 ,  g2) under BT (3) with parameters 
( A 2 ,  p2),  ( A l ,  P J  respectively. 

2. Some lemmas 

In order to prove the theorem, we first give some lemmas. In what follows, we always 
assume that the hypotheses of the theorem are satisfied and (f12, gI2) is given by (4). 

Proof: ( 5 ) - ( 8 )  can be proved similarly as in [5-7]. 

Lemma 2 



Boo$ According to the hypotheses of the theorem, we have 
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3. Proof of the theorem 

Based on lemma 1, it suffices to  show that 

By the use of lemmas 2-7, we have 



(12>A4) - 0  

which implies that Q,  = 0. Similarly, we can prove Q2 = 0. Thus we have completed 
0 

Remark We can check that ( f i2 ,  g,>) given by (4) is still a solution of (2) as A:=A: 
and c # 0 if the integration constants are suitably chosen. In fact, we have not imposed 
any restrictions on the parameter A for proving (6). So we get 

the  proof of the theorem. 

[Dx+ ( A I  + A 2 ) l . & . f i i = O  
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i.e. 

Thus 
f i2  = f o  e(A,+A,)x+z,lr) 

where gl(t) is an arbitrary function o f f .  Similarly, we have 
g,2 = g, elA,+*~)X+g~(,) 

where & ( I )  is an arbitrary function off .  Now we choose g , ( t )  =g2(t). In this case, by 
a direct computation, we can check that ( f iZ ,  g,J indeed satisfies (2) and the corre- 
sponding ( U ' ~ ,  $ I 2 ) -  (U', 4"). So this situation is a trivial one. 

4. Concluding remark 

We have proved the nonlinear superposition formula of the Kdv equation with a source 
(2). It is noticed that in [ S I  we consider the following bilinear Kdv hierarchy with a 
unified form 

(DJJ , , , ,+ ,+$Z , .~ ,D:  -@,D.,,-,).ff=o f l  E z,, I ,  = x. (20) 
A nonlinear superposition formula of (20) is also proved rigorously. Similarly, we can 
consider the following Kdv hierarchy with a source 

(DxDc2m+, +$D,,..,D: -fD&,,-,)f.f 

(D:+2ikDx)g. f = O .  
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Appendix . 

The following bilinear operator identities hold for arbitrary functions a, b, c and d :  

(D,a .  b ) c - (  D,a ,c )b  = -aD,b,c ( A I )  

(D:a. b ) c  - ( D i a .  c )b  = -3a,,D,b. c+3a,(Dxb. c ) ,  -fa[ D:b. c+3(  D,b. c) , ]  (A2)  
( D t a .  b ) ,c - (D:a .c) ,b  -a ,D,b~c-a , (D,b~ ~ ) , + a a [ D : b . ~ + 3 ( D , b . ~ ) , ]  (A3)  

D P + ' a . a = O  f l€Z+U{O) (A4)  

(A5)  

D, [ (D,a .d) .cb+ ad .  (Dxc ,  b ) ]  = (D:a .  b)cd -abD:c.d (A6)  

D:( D,a. 6). ab = Ox( D:a.  b )  , ab + 3D,( D,a. b )  . ( @ a .  b )  
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(D,a.b)cd-abD,c.d=D,ad.cb (A71 

(D:a.b)cd-abD:c.d 

=;Diad .  cb+;D,[( D:a .d) .cb+2(Dxa.d) . (  D,c  b )  +ad.(D:c,  b ) ] .  (A81 
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