Nonlinear superposition formula of the KdV equation with a source

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 245489
(http://iopscience.iop.org/0305-4470/24/23/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:03

Please note that terms and conditions apply.

Nonlinear superposition formula of the Kdv equation with a source

Xing-Biao Hu
Computing Center of Academia Sinica, Beijing, People's Republic of China

Received 18 July 1991

Abstract

A nonlinear superposition formula of the KdV equation with a source is proved rigorously.

1. Introduction

Recently, the KdV equation with a source, of the form

$$
\begin{align*}
& u_{t}+6 u u_{x}+u_{x x x}=-\int_{-\infty}^{\infty} \mathrm{d} k \nu\left(|\phi|^{2}\right)_{x} \tag{1a}\\
& \phi_{x x}+\left(u+k^{2}\right) \phi=0 \tag{1b}
\end{align*}
$$

was considered [1-3], where $u=u(x, t)$ and $\phi=\phi(x, t ; k)$ are real and complex functions respectively, k is a real parameter and $\nu=\nu(k, t)$ is a given real function. The boundary conditions for u and ϕ are specified as

$$
\begin{array}{ll}
u \rightarrow 0 & \text { as }|x| \rightarrow \infty \\
\phi \rightarrow \phi_{0} \mathrm{e}^{\mathrm{i} k x} & \text { as } x \rightarrow-\infty
\end{array}
$$

where $\phi_{0}=\phi_{0}(k, t)$ is a given function. Equation (1) has already been shown to be integrable by means of the inverse scattering method [1,2]. By means of the dependent variable transformations $u=2(\ln f)_{x x}, \phi=\phi_{0} \mathrm{e}^{\mathrm{ikx}} g / f,(1)$ is transformed into the following bilinear equation [3]

$$
\begin{align*}
& D_{x}\left(D_{t}+D_{x}^{3}\right) f \cdot f=-\int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(|g|^{2}-f^{2}\right) \tag{2a}\\
& \left(D_{x}^{2}+2 \mathrm{i} k D_{x}\right) g \cdot f=0 \tag{2b}
\end{align*}
$$

where $f=f(x, t)$ and $g=g(x, t ; k)$ are real and complex functions respectively, and the bilinear operator $D_{t}^{m} D_{x}^{n}$ is defined by $[4,5]$

$$
D_{t}^{m} D_{x}^{n} g \cdot f=\left.\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial x^{\prime}}\right)^{n} g(t, x) f\left(t^{\prime}, x^{\prime}\right)\right|_{r^{\prime}=t, x^{\prime}=x} .
$$

In [3], Matsuno has presented a two-parameter Bäcklund transformation

$$
\begin{align*}
& \left(D_{t}+D_{x}^{3}+\mu\right) f^{\prime} \cdot f=\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g^{\prime *} g}{k-\mathrm{i} \lambda}-\frac{g^{\prime} g^{*}}{k+\mathrm{i} \lambda}\right) \tag{3a}\\
& \left(D_{x}^{2}-2 \lambda D_{x}\right) f^{\prime} \cdot f=0 \\
& D_{x} g \cdot f^{\prime}=-(\lambda+\mathrm{i} k)\left(g^{\prime} f+g f^{\prime}\right) \tag{3c}\\
& D_{x} g^{\prime} \cdot f=(\lambda-\mathrm{i} k)\left(g^{\prime} f+g f^{\prime}\right) \tag{3d}
\end{align*}
$$

where $\lambda=\lambda(t)$ and $\mu=\mu(t)$ are real Bäcklund parameters and * denotes complex conjugate. A nonlinear superposition formula has also been deduced from the commutability of the вт (3).

The purpose of this paper is to prove the following nonlinear superposition formula of (2) rigorously.

Theorem. Let $\left(f_{0}, g_{0}\right)$ be a solution of (2) and suppose that $\left(f_{i}, g_{i}\right)(i=1,2)$ is a solution of (2) which is related by $\left(f_{0}, g_{0}\right)$ under Br (3) with (λ_{i}, μ_{i}), i.e. $\left(f_{0}, g_{0}\right) \xrightarrow{\left(\lambda_{i}, \mu_{i}\right)}\left(f_{i}, g_{i}\right)$ $(i=1,2), \lambda_{1} \neq \pm \lambda_{2},\left(\lambda_{1}-\lambda_{2}\right)_{t}=0, f_{j} \neq 0, g_{j} \neq 0(j=0,1,2)$. Then $\left(f_{12}, g_{12}\right)$ defined by

$$
\begin{align*}
& f_{0} f_{12}=c\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2} \tag{4}\\
& g_{0} g_{12}=c\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] g_{1} \cdot g_{2}
\end{align*}
$$

is a new solution which is related by $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ under BT (3) with parameters (λ_{2}, μ_{2}), (λ_{1}, μ_{1}) respectively.

2. Some lemmas

In order to prove the theorem, we first give some lemmas. In what follows, we always assume that the hypotheses of the theorem are satisfied and (f_{12}, g_{12}) is given by (4).

Lemma 1

$$
\begin{align*}
& D_{x} f_{0} \cdot f_{12}=-c\left(\lambda_{1}+\lambda_{2}\right) D_{x} f_{1} \cdot f_{2} \tag{5}\\
& c\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) f_{1} f_{2}=\left[D_{x}+\left(\lambda_{1}+\lambda_{2}\right)\right] f_{0} \cdot f_{12} \tag{6}\\
& \left(D_{x}^{2}-2 \lambda_{1} D_{x}\right) f_{12} \cdot f_{2}=0 \tag{7a}\\
& \left(D_{x}^{2}-2 \lambda_{2} D_{x}\right) f_{12} \cdot f_{1}=0 \tag{7b}\\
& D_{x} g_{2} \cdot f_{12}=-\left(\lambda_{1}+i k\right)\left(g_{12} f_{2}+g_{2} f_{12}\right) \tag{8a}\\
& D_{x} g_{1} \cdot f_{12}=-\left(\lambda_{2}+\mathrm{i} k\right)\left(g_{12} f_{1}+g_{1} f_{12}\right) \tag{8b}\\
& D_{x} g_{12} \cdot f_{2}=\left(\lambda_{1}-\mathrm{i} k\right)\left(g_{12} f_{2}+g_{2} f_{12}\right) \tag{8c}\\
& D_{x} g_{12} \cdot f_{1}=\left(\lambda_{2}-i k\right)\left(g_{12} f_{1}+g_{1} f_{12}\right) . \tag{8d}
\end{align*}
$$

Proof. (5)-(8) can be proved similarly as in [5-7].

Lemma 2

$$
\begin{equation*}
D_{x}^{2} f_{0} \cdot f_{12}=c\left[-D_{x}^{3}+8 \lambda_{1} \lambda_{2} D_{x}+3\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2} \tag{9}
\end{equation*}
$$

Proof. According to the hypotheses of the theorem and (7b), we have

$$
\begin{aligned}
& 0=\left[\left(D_{x}^{2}-2 \lambda_{1}\right.\right.\left.\left.D_{x}\right) f_{1} \cdot f_{0}\right] f_{12}+\left[\left(D_{x}^{2}-2 \lambda_{2} D_{x}\right) f_{12} \cdot f_{1}\right] f_{0} \\
&= 2 f_{1 x x} f_{0} f_{12}-2 f_{1 x}\left(f_{0} f_{12}\right)_{x}+f_{1}\left(f_{0 x x} f_{12}+f_{0} f_{12 x x}\right) \\
&+2\left(\lambda_{2}-\lambda_{1}\right) f_{1 x} f_{0} f_{12}+2 f_{1}\left(\lambda_{1} f_{0 x} f_{12}-\lambda_{2} f_{0} f_{12 x}\right) \\
& \stackrel{(4)}{=} 2 c f_{1 x x}\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2}-2 c f_{1 x}\left\{\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2}\right\}_{x} \\
&+2 c\left(\lambda_{2}-\lambda_{1}\right) f_{1 x}\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2} \\
&+f_{1}\left[\frac{1}{2} D_{x}^{2} f_{0} \cdot f_{12}+\frac{1}{2}\left(f_{0} f_{12}\right)_{x x}+\left(\lambda_{1}+\lambda_{2}\right) D_{x} f_{0} \cdot f_{12}+\left(\lambda_{1}-\lambda_{2}\right)\left(f_{0} f_{12}\right)_{x}\right] \\
&= f_{1}\left\{-2 c f_{1 x x} f_{2 x}-2 c\left(\lambda_{1}-\lambda_{2}\right) f_{1 x x} f_{2}+2 c f_{1 x} f_{2 x x}\right. \\
&+4 c\left(\lambda_{1}-\lambda_{2}\right) f_{1 x} f_{2 x}+2 c\left(\lambda_{2}-\lambda_{1}\right)^{2} f_{1 x} f_{2} \\
&\left.+\frac{1}{2} D_{x}^{2} f_{0} \cdot f_{12}+\frac{1}{2}\left(f_{0} f_{12}\right)_{x x}+\left(\lambda_{1}+\lambda_{2}\right) D_{x} f_{0} \cdot f_{12}+\left(\lambda_{1}-\lambda_{2}\right)\left(f_{0} f_{12}\right)_{x}\right\} \\
& \stackrel{(4)(15)}{=} f_{1}\left\{-2 c f_{1 x x} f_{2 x}-2 c\left(\lambda_{1}-\lambda_{2}\right) f_{1 x x} f_{2}+2 c f_{1 x} f_{2 x x}+4 c\left(\lambda_{1}-\lambda_{2}\right) f_{1 x} f_{2 x}\right. \\
&+2 c\left(\lambda_{2}-\lambda_{1}\right)^{2} f_{1 x} f_{2}+\frac{1}{2} D_{x}^{2} f_{0} \cdot f_{12}+\frac{1}{2} c\left[\left(D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right) f_{1} \cdot f_{2}\right]_{x x} \\
&\left.-c\left(\lambda_{1}+\lambda_{2}\right)^{2} D_{x} f_{1} \cdot f_{2}+c\left(\lambda_{1}-\lambda_{2}\right)\left[\left(D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right) f_{1} \cdot f_{2}\right]_{x}\right\}
\end{aligned}
$$

which implies that (9) holds.

Lemma 3

$$
\begin{align*}
-\left[D_{1}+\frac{1}{4} D_{x}^{3}+\right. & \left.\left(\mu_{1}-\mu_{2}\right)\right] f_{1} \cdot f_{2}+\frac{3}{4 c\left(\lambda_{1}+\lambda_{2}\right)} D_{x}^{3} f_{0} \cdot f_{12} \\
& -\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left[\frac{D_{x} g_{2} \cdot g_{i}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}+\frac{D_{x} g_{2}^{*} \cdot g_{1}}{\left(k+\mathrm{i} \lambda_{1}\right)\left(\lambda_{2}+\mathrm{i} k\right)}\right. \\
& \left.+\frac{g_{1}^{*} g_{2}}{k-\mathrm{i} \lambda_{1}}+\frac{g_{1}^{*} g_{2}}{k+\mathrm{i} \lambda_{2}}-\frac{g_{1} g_{2}^{*}}{k+\mathrm{i} \lambda_{1}}-\frac{g_{1} g_{2}^{*}}{k-\mathrm{i} \lambda_{2}}\right]=0 . \tag{10}
\end{align*}
$$

Proof. According to the hypotheses of the theorem, we have

$$
\begin{aligned}
0=\left[\left(D_{t}+D_{x}^{3}\right.\right. & \left.\left.-\mu_{1}\right) f_{0} \cdot f_{1}+\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g_{1}^{*} g_{0}}{k-\mathrm{i} \lambda_{1}}-\frac{g_{1} g_{0}^{*}}{k+\mathrm{i} \lambda_{1}}\right)\right] f_{2} \\
& -\left[\left(D_{t}+D_{x}^{3}-\mu_{2}\right) f_{0} \cdot f_{2}+\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g_{2}^{*} g_{0}}{k-\mathrm{i} \lambda_{2}}-\frac{g_{2} g_{0}^{*}}{k+\mathrm{i} \lambda_{2}}\right)\right] f_{1} \\
\stackrel{\left(\mathrm{~A} 1, \mathrm{~A}^{2}\right)}{=} & -f_{0} D_{t} f_{1} \cdot f_{2}-3 f_{0 x x} D_{x} f_{1} \cdot f_{2}+3 f_{0 x}\left(D_{x} f_{1} \cdot f_{2}\right)_{x} \\
& -\frac{1}{4} f_{0}\left[D_{x}^{3} f_{1} \cdot f_{2}+3\left(D_{x} f_{1} \cdot f_{2}\right)_{x x}\right]+\left(\mu_{2}-\mu_{1}\right) f_{0} f_{1} f_{2} \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left\{\frac{g_{1}^{*}}{k-\mathrm{i} \lambda_{1}} \cdot \frac{1}{\lambda_{2}-\mathrm{i} k}\left[D_{x}-\left(\lambda_{2}-\mathrm{i} k\right)\right] g_{2} \cdot f_{0}\right. \\
& -\frac{g_{1}}{k+\mathrm{i} \lambda_{1}} \cdot \frac{1}{\lambda_{2}+\mathrm{i} k}\left[D_{x}-\left(\lambda_{2}+\mathrm{i} k\right)\right] g_{2}^{*} \cdot f_{0}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{g_{2}^{*}}{k-\mathrm{i} \lambda_{2}} \cdot \frac{1}{\lambda_{1}-\mathrm{i} k}\left[D_{x}-\left(\lambda_{1}-\mathrm{i} k\right)\right] g_{1} \cdot f_{0} \\
& \left.+\frac{g_{2}}{k+\mathrm{i} \lambda_{2}} \cdot \frac{1}{\lambda_{1}+\mathrm{i} k}\left[D_{x}-\left(\lambda_{1}+\mathrm{i} k\right)\right] g_{1}^{*} \cdot f_{0}\right\} \\
& \stackrel{(5)}{=} f_{0}\left\{-D_{t} f_{1} \cdot f_{2}-\frac{1}{4}\left[D_{x}^{3} f_{1} \cdot f_{2}+3\left(D_{x} f_{1} \cdot f_{2}\right)_{x x}\right]+\left(\mu_{2}-\mu_{1}\right) f_{1} f_{2}\right\} \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left\{\frac{1}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}\left[\left(D_{x} f_{0} \cdot g_{2}\right) g_{1}^{*}-\left(D_{x} f_{0} \cdot g_{1}^{*}\right) g_{2}\right]\right. \\
& +\frac{1}{\left(k+\mathrm{i} \lambda_{1}\right)\left(\lambda_{2}+\mathrm{i} k\right)}\left[\left(D_{x} f_{0} \cdot g_{2}^{*}\right) g_{1}-\left(D_{x} f_{0} \cdot g_{1}\right) g_{2}^{*}\right] \\
& \left.+f_{0}\left[-\frac{\tilde{g}_{1}^{*} \tilde{g}_{2}}{k-\mathrm{i} \lambda_{1}}+\frac{\tilde{g}_{1} \tilde{g}_{2}^{*}}{k+\mathrm{i} \lambda_{1}}+\frac{\bar{g}_{1} \tilde{g}_{2}^{*}}{k-\mathrm{i} \lambda_{2}}-\frac{\tilde{g}_{1}^{*} g_{2}}{k+\mathrm{i} \lambda_{2}}\right]\right\} \\
& +\frac{3}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x x} D_{x} f_{0} \cdot f_{12}-\frac{3}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x}\left(D_{x} f_{0} \cdot f_{12}\right)_{x} \\
& \stackrel{(\mathrm{~A})(15)}{=} f_{0}\left\{\left[-D_{1}-\frac{1}{4} D_{x}^{3}+\left(\mu_{2}-\mu_{1}\right)\right] f_{1} \cdot f_{2}\right. \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left[-\frac{D_{x} g_{2} \cdot g_{1}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}-\frac{D_{x} g_{2}^{*} \cdot g_{1}}{\left(k+\mathrm{i} \lambda_{1}\right)\left(\lambda_{2}+\mathrm{i} k\right)}\right. \\
& \left.-\frac{g_{1}^{*} g_{2}}{k-\mathrm{i} \lambda_{1}}+\frac{g_{1} g_{2}^{*}}{k+\mathrm{i} \lambda_{1}}+\frac{g_{1} g_{2}^{*}}{k-\mathrm{i} \lambda_{2}}-\frac{g_{1}^{*} g_{2}}{k+\mathrm{i} \lambda_{2}}\right] \\
& \left.-\frac{3}{4 c\left(\lambda_{1}+\lambda_{2}\right)}\left(D_{x} f_{0} \cdot f_{12}\right)_{x x}-\frac{3}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x x} f_{12 x}+\frac{3}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x} f_{12 x x}\right\}
\end{aligned}
$$

which implies that (10) holds.

Lemma 4

$$
\begin{equation*}
\frac{1}{4 c\left(\lambda_{1}+\lambda_{2}\right)} D_{x}^{3} f_{0} \cdot f_{12}=\left[\frac{3}{4} D_{x}^{3}-4 \lambda_{1} \lambda_{2} D_{x}-2\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2} \tag{11}
\end{equation*}
$$

Proof. According to the hypotheses of the theorem, we have

$$
\begin{aligned}
& 0=\left[\left(D_{x}^{2}-2 \lambda_{1} D_{x}\right) f_{1} \cdot f_{0}\right]_{x} f_{2}-\left[\left(D_{x}^{2}-2 \lambda_{2} D_{x}\right) f_{2} \cdot f_{0}\right]_{x} f_{1} \\
& \stackrel{\left(A^{\prime}\right)}{=}-f_{0 x x} D_{x} f_{1} \cdot f_{2}-f_{0 x}\left(D_{x} f_{1} \cdot f_{2}\right)_{x}+\frac{1}{4} f_{0}\left[D_{x}^{3} f_{1} \cdot f_{2}+3\left(D_{x} f_{1} \cdot f_{2}\right)_{x x}\right] \\
&+2\left(\lambda_{1}-\lambda_{2}\right) f_{0 x x} f_{1} f_{2}-2 f_{0}\left(\lambda_{1} f_{1 x x} f_{2}-\lambda_{2} f_{1} f_{2 x x}\right) \\
& \stackrel{(5,6)}{=} \frac{1}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x x} D_{x} f_{0} \cdot f_{12}+\frac{1}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x}\left(D_{x} f_{0} \cdot f_{12}\right)_{x} \\
&+\frac{1}{4} f_{0}\left[D_{x}^{3} f_{1} \cdot f_{2}+3\left(D_{x} f_{1} \cdot f_{2}\right)_{x x}\right]-\frac{2}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x x}\left[D_{x}+\left(\lambda_{1}+\lambda_{2}\right)\right] f_{0} \cdot f_{12} \\
& \quad-f_{0}\left\{\left(\lambda_{1}+\lambda_{2}\right)\left(D_{x} f_{1} \cdot f_{2}\right)_{x}+\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right)\left[D_{x}^{2} f_{1} \cdot f_{2}+\left(f_{1} f_{2}\right)_{x x}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(5,6)}{=} f_{0}\left\{\frac{1}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x x} f_{12 x}-\frac{1}{c\left(\lambda_{1}+\lambda_{2}\right)} f_{0 x} f_{12 x x}+\frac{1}{4} D_{x}^{3} f_{1} \cdot f_{2}\right. \\
& \quad-\frac{3}{4 c\left(\lambda_{1}+\lambda_{2}\right)}\left(D_{x} f_{0} \cdot f_{12}\right)_{x x}-\frac{2}{c} f_{0 x x} f_{12}+\frac{1}{c}\left(D_{x} f_{0} \cdot f_{12}\right)_{x} \\
& \left.\quad-\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2} f_{1} \cdot f_{2}+\frac{1}{2 c\left(\lambda_{1}+\lambda_{2}\right)}\left[\left(D_{x}+\left(\lambda_{1}+\lambda_{2}\right)\right) f_{0} \cdot f_{12}\right]_{x x}\right\} \\
& = \\
& f_{0}\left\{-\frac{1}{4 c\left(\lambda_{1}+\lambda_{2}\right)} D_{x}^{3} f_{0} \cdot f_{12}+\frac{1}{4} D_{x}^{3} f_{1} \cdot f_{2}-\frac{1}{2 c} D_{x}^{2} f_{0} \cdot f_{12}-\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2} f_{1} \cdot f_{2}\right\}
\end{aligned}
$$

which implies that (11) holds by using (9).

Lemma 5

$$
\begin{align*}
{\left[-D_{t}+2 D_{x}^{3}-\right.} & \left.12 \lambda_{1} \lambda_{2} D_{x}-6\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}+\left(\mu_{2}-\mu_{1}\right)\right] f_{1} \cdot f_{2} \\
& -\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left[\frac{D_{x} g_{2} \cdot g_{1}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}+\frac{D_{x} g_{2}^{*} \cdot g_{1}}{\left(k+\mathrm{i} \lambda_{1}\right)\left(\lambda_{2}+\mathrm{i} k\right)}\right. \\
& \left.+\frac{g_{1}^{*} g_{2}}{k-\mathrm{i} \lambda_{1}}+\frac{g_{1}^{*} g_{2}}{k+\mathrm{i} \lambda_{2}}-\frac{g_{1} g_{2}^{*}}{k+\mathrm{i} \lambda_{1}}-\frac{g_{1} g_{2}^{*}}{k-\mathrm{i} \lambda_{2}}\right]=0 . \tag{12}
\end{align*}
$$

Proof. Equation (12) can be deduced directly from (10) and (11).

Lemma 6

$D_{x}^{3}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot f_{1} f_{2}=-D_{x}\left\{\left[2 D_{x}^{3}-12 \lambda_{1} \lambda_{2} D_{x}-6\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2}$
$D_{x}\left(D_{x}^{2} f_{1} \cdot f_{2}\right) \cdot\left(D_{x} f_{1} \cdot f_{2}\right)=D_{x}\left\{\left[D_{x}^{3}-4 \lambda_{1} \lambda_{2} D_{x}-2\left(\lambda_{1}-\lambda_{2}\right) D_{x}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2}$

Proof

$$
\begin{aligned}
& c^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) D_{x}^{3}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot f_{1} f_{2} \\
& \stackrel{(5,6)}{=} \frac{1}{\left(\lambda_{1}+\lambda_{2}\right)} D_{x}^{3}\left(D_{x} f_{0} \cdot f_{12}\right) \cdot\left[\left(D_{x}+\left(\lambda_{1}+\lambda_{2}\right)\right) f_{0} \cdot f_{12}\right] \\
& \stackrel{(\text { A4) }}{=} D_{x}^{3}\left(D_{x} f_{0} \cdot f_{12}\right) \cdot f_{0} f_{12} \\
& \stackrel{(\text { (AS) }}{=} D_{x}\left(D_{x}^{3} f_{0} \cdot f_{12}\right) \cdot f_{0} f_{12}+3 D_{x}\left(D_{x} f_{0} \cdot f_{12}\right) \cdot\left(D_{x}^{2} f_{0} \cdot f_{12}\right) \\
& \stackrel{(5,9,11)}{=} 4 c^{2}\left(\lambda_{1}+\lambda_{2}\right) D_{x}\left\{\left[\frac{3}{4} D_{x}^{3}-4 \lambda_{1} \lambda_{2} D_{x}\right.\right. \\
& \left.\left.-2\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot\left\{\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2}\right\} \\
& -3 c^{2}\left(\lambda_{1}+\lambda_{2}\right) D_{x}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot\left\{\left[-D_{x}^{3}+8 \lambda_{1} \lambda_{2} D_{x}+3\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \\
& =-4 c^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) D_{x}\left\{\left[\frac{3}{4} D_{x}^{3}-4 \lambda_{1} \lambda_{2} D_{x}-2\left(\lambda_{t}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& +c^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) D_{x}\left(D_{x}^{2} f_{1} \cdot f_{2}\right) \cdot\left(D_{x} f_{1} \cdot f_{2}\right)
\end{aligned}
$$

which implies that (13) and (14) hold by using (A5).

Lemma 7

$$
\begin{align*}
& D_{x} g_{1} g_{2}^{*} \cdot\left(D_{x} f_{1} \cdot f_{2}\right)=D_{x}\left(D_{x} g_{1} \cdot g_{2}^{*}\right) \cdot f_{1} f_{2}+2 \mathrm{i} k D_{x} g_{1} g_{2}^{*} \cdot f_{1} f_{2} \tag{15}\\
& D_{x}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot g_{2} g_{1}^{*}=-D_{x}\left(D_{x} g_{1}^{*} \cdot g_{2}\right) \cdot f_{1} f_{2}+2 \mathrm{i} k D_{x} g_{2} g_{1}^{*} \cdot f_{1} f_{2} \tag{16}
\end{align*}
$$

Proof. By the use of (A6), we have

$$
\begin{align*}
D_{x} g_{1} g_{2}^{*} \cdot\left(D_{x}\right. & \left.f_{1} \cdot f_{2}\right)-D_{x}\left(D_{x} g_{1} \cdot g_{2}^{*}\right) \cdot f_{1} f_{2} \\
& =D_{x}\left[\left(D_{x} g_{2}^{*} \cdot g_{1}\right) \cdot f_{1} f_{2}+g_{2}^{*} g_{1} \cdot\left(D_{x} f_{1} \cdot f_{2}\right)\right] \\
& =\left(D_{x}^{2} g_{2}^{*} \cdot f_{2}\right) f_{1} g_{1}-\left(D_{x}^{2} f_{1} \cdot g_{1}\right) f_{2} g_{2}^{*} . \tag{17}
\end{align*}
$$

On the other hand, since $\left(f_{1}, g_{1}\right)$ and (f_{2}, g_{2}) are two solutions of (2), we have

$$
\begin{align*}
& \left(D_{x}^{2}-2 \mathrm{i} k D_{x}\right) g_{2}^{*} \cdot f_{2}=0 \tag{18}\\
& \left(D_{x}^{2}+2 \mathrm{i} k D_{x}\right) g_{1} \cdot f_{1}=0 \tag{19}
\end{align*}
$$

By the use of (18) and (19), (17) becomes

$$
\begin{aligned}
& D_{x} g_{1} g_{2}^{*} \cdot\left(D_{x} f_{1} \cdot f_{2}\right)-D_{x}\left(D_{x} g_{1} \cdot g_{2}^{*}\right) \cdot f_{1} f_{2} \\
& \quad=2 \mathrm{i} k\left(D_{x} g_{2}^{*} \cdot f_{2}\right) f_{1} g_{1}+2 \mathrm{i} k\left(D_{x} g_{1} \cdot f_{1}\right) f_{2} g_{2}^{*} \\
& \quad \stackrel{(\mathrm{~A})}{=} 2 \mathrm{i} k D_{x} g_{2}^{*} g_{1} \cdot f_{1} f_{2}
\end{aligned}
$$

which implies that (15) holds. Further, (16) can be deduced directly from (15).

3. Proof of the theorem

Based on lemma 1, it suffices to show that

$$
\begin{aligned}
& Q_{1} \equiv\left(D_{t}+D_{x}^{3}+\mu_{2}\right) f_{12} \cdot f_{1}-\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g_{12}^{*} g_{1}}{k-\mathrm{i} \lambda_{2}}-\frac{g_{12} g_{1}^{*}}{k+\mathrm{i} \lambda_{2}}\right)=0 \\
& Q_{2} \equiv\left(D_{1}+D_{x}^{3}+\mu_{1}\right) f_{12} \cdot f_{2}-\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g_{12}^{*} g_{2}}{k-\mathrm{i} \lambda_{1}}-\frac{g_{12} g_{2}^{*}}{k+\mathrm{i} \lambda_{1}}\right)=0 .
\end{aligned}
$$

By the use of lemmas 2-7, we have

$$
\begin{aligned}
& Q_{1} f_{0} f_{2}=\left[\left(D_{t}+D_{x}^{3}-\mu_{2}\right) f_{0} \cdot f_{2}+\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(\frac{g_{2}^{*} g_{0}}{k-\mathrm{i} \lambda_{2}}-\frac{g_{2} \mathrm{~g}_{0}^{*}}{k+\mathrm{i} \lambda_{2}}\right)\right] f_{1} f_{12} \\
& -\left[\left(D_{1}+D_{x}^{3}-\mu_{2}\right) f_{1} \cdot f_{12}+\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k v\left|\phi_{0}\right|^{2}\left(\frac{g_{12}^{*} g_{1}}{k-\mathrm{i} \lambda_{2}}-\frac{g_{12} g_{1}^{*}}{k+\mathrm{i} \lambda_{2}}\right)\right] f_{0} f_{2} \\
& { }^{\left(\mathrm{A} 7,{ }^{\mathrm{A}}{ }^{8)} D_{t} f_{0} f_{12} \cdot f_{1} f_{2}+\frac{1}{4} D_{x}^{3} f_{0} f_{12} \cdot f_{1} f_{2}, ~\right.} \\
& +\frac{3}{4} D_{x}\left[\left(D_{x}^{2} f_{0} \cdot f_{12}\right) \cdot f_{1} f_{2}+f_{0} f_{12} \cdot\left(D_{x}^{2} f_{1} \cdot f_{2}\right)+2\left(D_{x} f_{0} \cdot f_{12}\right) \cdot\left(D_{x} f_{1} \cdot f_{2}\right)\right] \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{\mid}\left\{\frac{g_{2}^{*} f_{12}}{k-\mathrm{i} \lambda_{2}} \frac{\left[D_{x}-\left(\lambda_{1}-\mathrm{i} k\right)\right] g_{1} \cdot f_{0}}{\lambda_{1}-\mathrm{i} k}\right. \\
& -\frac{g_{2} f_{12}}{k+\mathrm{i} \lambda_{2}} \frac{\left[D_{x}-\left(\lambda_{1}+\mathrm{i} k\right)\right] g_{1}^{*} \cdot f_{0}}{\lambda_{1}+\mathrm{i} k} \\
& \left.+\frac{g_{1} f_{0}}{k-\mathrm{i} \lambda_{2}} \frac{\left[D_{x}+\left(\lambda_{1}-\mathrm{i} k\right)\right] g_{2}^{*} \cdot f_{12}}{\lambda_{1}-\mathrm{i} k}-\frac{g_{1}^{*} f_{0}}{k+\mathrm{i} \lambda_{2}} \frac{\left[D_{x}+\left(\lambda_{1}+\mathrm{i} k\right)\right] g_{2} \cdot f_{12}}{\lambda_{1}+\mathrm{i} k}\right\} \\
& { }^{(4,5.9, \text { A4 })} c D_{t}\left(D_{x} f_{1} \cdot f_{z}\right) \cdot f_{1} f_{2}+\frac{c}{4} D_{x}^{3}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot f_{1} f_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3 c}{4} D_{x}\left\{\left[-D_{x}^{3}+8 \lambda_{1} \lambda_{2} D_{x}+3\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& +\frac{3 c}{4} D_{x}\left\{\left[D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right] f_{1} \cdot f_{2}\right\} \cdot\left(D_{x}^{2} f_{1} \cdot f_{2}\right) \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left\{\frac{D_{x} g_{1} g_{2}^{*} \cdot f_{0} f_{12}}{\left(k-\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}-\mathrm{i} k\right)}+\frac{D_{x} f_{0} f_{12} \cdot g_{2} g_{1}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{i}+\mathrm{i} k\right)}\right\} \\
& \stackrel{(13,14,4)}{=} c D_{r}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot f_{1} f_{2}-\frac{c}{4} D_{x}\left\{\left[2 D_{x}^{3}-12 \lambda_{1} \lambda_{2} D_{x}-6\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& +\frac{3 c}{4} D_{x}\left\{\left[-D_{x}^{3}+8 \lambda_{1} \lambda_{2} D_{x}+3\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& -\frac{3 c}{4} D_{x}\left\{\left[D_{x}^{3}-4 \lambda_{1} \lambda_{2} D_{x}-2\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left\{\frac{D_{x} g_{1} g_{2}^{*} \cdot \frac{c\left[\left(D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right) f_{1} \cdot f_{2}\right]}{\left(k-\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}-\mathrm{i} k\right)}}{\left(\lambda^{2}\right)}\right. \\
& \left.+\frac{c D_{x}\left[\left(D_{x}-\left(\lambda_{1}-\lambda_{2}\right)\right) f_{1} \cdot f_{2}\right] \cdot g_{2} g_{1}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}\right\} \\
& \stackrel{\left(15 S_{1}^{16)}\right.}{=} c D_{t}\left(D_{x} f_{1} \cdot f_{2}\right) \cdot f_{1} f_{2}-2 c D_{x}\left\{\left[D_{x}^{3}-6 \lambda_{1} \lambda_{2} D_{x}-3\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right\} \cdot f_{1} f_{2} \\
& +\frac{\mathrm{i}}{4} c \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left\{\begin{array}{l}
D_{x}\left(D_{x} g_{1} \cdot g_{2}^{*}\right) \cdot f_{1} f_{2}+2 \mathrm{i} k D_{x} g_{1} g_{2}^{*} \cdot f_{1} f_{2} \\
\frac{-\left(\lambda_{1}-\lambda_{2}^{\prime}\right) D_{x} g_{1} g_{2}^{*} \cdot f_{1} f_{2}}{\left(k-\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}-\mathrm{i} k\right)}
\end{array}\right. \\
& \left.+\frac{-D_{x}\left(D_{x} g_{1}^{*} \cdot g_{2}\right) \cdot f_{1} f_{2}+2 \mathrm{i} k D_{x} g_{2} g_{1}^{*} \cdot f_{1} f_{2}+\left(\lambda_{1}-\lambda_{2}\right) D_{x} g_{1}^{*} g_{2} \cdot f_{1} f_{2}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}\right\} \\
& =c D_{x}\left\{\left[D_{t}-2 D_{x}^{3}+12 \lambda_{1} \lambda_{2} D_{x}+6\left(\lambda_{1}-\lambda_{2}\right) D_{x}^{2}\right] f_{1} \cdot f_{2}\right. \\
& +\frac{\mathrm{i}}{4} \int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left[\frac{D_{x} g_{2} \cdot g_{1}^{*}}{\left(k+\mathrm{i} \lambda_{2}\right)\left(\lambda_{1}+\mathrm{i} k\right)}+\frac{D_{x} g_{2}^{*} \cdot g_{1}}{\left(k+\mathrm{i} \lambda_{1}\right)\left(\lambda_{2}+\mathrm{i} k\right)}\right. \\
& \left.\left.+\frac{g_{1}^{*} g_{2}}{k-\mathrm{i} \lambda_{1}}+\frac{g_{1}^{*} g_{2}}{k+\mathrm{i} \lambda_{2}}-\frac{g_{1} g_{2}^{*}}{k+\mathrm{i} \lambda_{1}}-\frac{g_{1} g_{2}^{*}}{k-\mathrm{i} \lambda_{2}}\right]\right\} \cdot f_{1} f_{2} \\
& { }^{(12, A 4)} 0
\end{aligned}
$$

which implies that $Q_{1}=0$. Similarly, we can prove $Q_{2}=0$. Thus we have completed the proof of the theorem.

Remark. We can check that $\left(f_{12}, g_{12}\right)$ given by (4) is still a solution of (2) as $\lambda_{1}^{2}=\lambda_{2}^{2}$ and $c \neq 0$ if the integration constants are suitably chosen. In fact, we have not imposed any restrictions on the parameter λ for proving (6). So we get

$$
\left[D_{x}+\left(\lambda_{1}+\lambda_{2}\right)\right] f_{0} \cdot f_{12}=0
$$

i.e.

$$
\left(\ln \frac{f_{12}}{f_{0}}\right)_{x}=\left(\lambda_{1}+\lambda_{2}\right)
$$

Thus

$$
f_{12}=f_{0} \mathrm{e}^{\left(\lambda_{1}+\lambda_{2}\right) x+\mathrm{g}_{1}(t)}
$$

where $g_{1}(t)$ is an arbitrary function of t. Similarly, we have

$$
g_{12}=g_{0} \mathrm{e}^{\left(\lambda_{1}+\lambda_{2}\right) x+g_{2}(t)}
$$

where $g_{2}(t)$ is an arbitrary function of t. Now we choose $g_{1}(t)=g_{2}(t)$. In this case, by a direct computation, we can check that (f_{12}, g_{12}) indeed satisfies (2) and the corresponding $\left(u^{12}, \phi^{12}\right) \equiv\left(u^{0}, \phi^{0}\right)$. So this situation is a trivial one.

4. Concluding remark

We have proved the nonlinear superposition formula of the Kdv equation with a source (2). It is noticed that in [8] we consider the following bilinear Kdv hierarchy with a unified form

$$
\begin{equation*}
\left(D_{x} D_{t_{2 n+1}}+\frac{2}{3} D_{t_{2 n-1}} D_{x}^{3}-\frac{1}{3} D_{t_{3}} D_{t_{2 n-1}}\right) f \cdot f=0 \quad n \in \mathbb{Z}_{+}, t_{1}=x \tag{20}
\end{equation*}
$$

A nonlinear superposition formula of (20) is also proved rigorously. Similarly, we can consider the following kdv hierarchy with a source

$$
\begin{aligned}
& \left(D_{x} D_{t_{2 n+1}}+\frac{2}{3} D_{t_{2 n-1}} D_{x}^{3}-\frac{1}{3} D_{t_{3}} D_{t_{2 n-1}}\right) f \cdot f \\
& \quad=-\int_{-\infty}^{\infty} \mathrm{d} k \nu\left|\phi_{0}\right|^{2}\left(|g|^{2}-f^{2}\right) \quad n \in \mathbb{Z}_{+}, t_{1}=x \\
& \left(D_{x}^{2}+2 \mathrm{i} k D_{x}\right) g \cdot f=0
\end{aligned}
$$

Acknowledgment

The author would like to express his sincere thanks to Professor Tu Gui-Zhang for his guidance and encouragement.

Appendix

The following bilinear operator identities hold for arbitrary functions a, b, c and d :

$$
\begin{align*}
& \left(D_{t} a \cdot b\right) c-\left(D_{1} a \cdot c\right) b=-a D_{t} b \cdot c \tag{A1}\\
& \left(D_{x}^{3} a \cdot b\right) c-\left(D_{x}^{3} a \cdot c\right) b=-3 a_{x x} D_{x} b \cdot c+3 a_{x}\left(D_{x} b \cdot c\right)_{x}-\frac{1}{4} a\left[D_{x}^{3} b \cdot c+3\left(D_{x} b \cdot c\right)_{x x}\right] \tag{A2}\\
& \left(D_{x}^{2} a \cdot b\right)_{x} c-\left(D_{x}^{2} a \cdot c\right)_{x} b=-a_{x x} D_{x} b \cdot c-a_{x}\left(D_{x} b \cdot c\right)_{x}+\frac{1}{4} a\left[D_{x}^{3} b \cdot c+3\left(D_{x} b \cdot c\right)_{x x}\right] \tag{A3}\\
& D_{x}^{2 n+1} a \cdot a=0 \quad n \in \mathbb{Z}_{+} \cup\{0\} \tag{A4}\\
& D_{x}^{3}\left(D_{x} a \cdot b\right) \cdot a b=D_{x}\left(D_{x}^{3} a \cdot b\right) \cdot a b+3 D_{x}\left(D_{x} a \cdot b\right) \cdot\left(D_{x}^{2} a \cdot b\right) \tag{A5}\\
& D_{x}\left[\left(D_{x} a \cdot d\right) \cdot c b+a d \cdot\left(D_{x} c \cdot b\right)\right]=\left(D_{x}^{2} a \cdot b\right) c d-a b D_{x}^{2} c \cdot d \tag{A6}
\end{align*}
$$

$$
\begin{align*}
& \left(D_{x} a \cdot b\right) c d-a b D_{x} c \cdot d=D_{x} a d \cdot c b \tag{A7}\\
& \begin{aligned}
&\left(D_{x}^{3} a \cdot b\right) c d-a b D_{x}^{3} c \cdot d \\
& \quad=\frac{1}{4} D_{x}^{3} a d \cdot c b+\frac{3}{4} D_{x}\left[\left(D_{x}^{2} a \cdot d\right) \cdot c b+2\left(D_{x} a \cdot d\right) \cdot\left(D_{x} c \cdot b\right)+a d \cdot\left(D_{x}^{2} c \cdot b\right)\right]
\end{aligned}
\end{align*}
$$

References

[1] Mel'nikov V K 1990 Inverse Problems 6233
[2] Leon J and Latifi A 1990 J. Phys. A: Math. Gen. 231385
[3] Matsuno Y 1991 J. Phys. A: Math. Gen. 24 L273
[4] Hirota R 1980 Direct Methods in Soliton Theory, Solitons ed R K Bullough and P J Caudrey (Berlin: Springer)
[5] Matsuno Y 1984 Bilinear Transformation Method (New York: Academic)
[6] Nakamura A 1979 J. Phys. Soc. Japan 471335
[7] Nakamura A 1980 J. Phys. Soc. Japan 492380
[8] Hu Xing-Biao and Li Yong 1989 Bilinearization of Kdv, MKdV and classical Boussinesq hierarchies Preprint Computing Center of Academia Sinica

